BRICHOS domain of Bri2 inhibits islet amyloid polypeptide (IAPP) fibril formation and toxicity in human beta cells

نویسندگان

  • Marie E. Oskarsson
  • Erik Hermansson
  • Ye Wang
  • Nils Welsh
  • Jenny Presto
  • Jan Johansson
  • Gunilla T. Westermark
چکیده

Aggregation of islet amyloid polypeptide (IAPP) into amyloid fibrils in islets of Langerhans is associated with type 2 diabetes, and formation of toxic IAPP species is believed to contribute to the loss of insulin-producing beta cells. The BRICHOS domain of integral membrane protein 2B (Bri2), a transmembrane protein expressed in several peripheral tissues and in the brain, has recently been shown to prevent fibril formation and toxicity of Aβ42, an amyloid-forming peptide in Alzheimer disease. In this study, we demonstrate expression of Bri2 in human islets and in the human beta-cell line EndoC-βH1. Bri2 colocalizes with IAPP intracellularly and is present in amyloid deposits in patients with type 2 diabetes. The BRICHOS domain of Bri2 effectively inhibits fibril formation in vitro and instead redirects IAPP into formation of amorphous aggregates. Reduction of endogenous Bri2 in EndoC-βH1 cells with siRNA increases sensitivity to metabolic stress leading to cell death while a concomitant overexpression of Bri2 BRICHOS is protective. Also, coexpression of IAPP and Bri2 BRICHOS in lateral ventral neurons of Drosophila melanogaster results in an increased cell survival. IAPP is considered to be the most amyloidogenic peptide known, and described findings identify Bri2, or in particular its BRICHOS domain, as an important potential endogenous inhibitor of IAPP aggregation and toxicity, with the potential to be a possible target for the treatment of type 2 diabetes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Islet amyloid polypeptide (IAPP) in Type 2 diabetes and Alzheimer disease

Oskarsson, M. 2015. Islet amyloid polypeptide (IAPP) in Type 2 diabetes and Alzheimer disease. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1158. 55 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9400-1. The misfolding and aggregation of the beta cell hormone islet amyloid polypeptide (IAPP) into amyloid fibrils is the main pathological fin...

متن کامل

Islet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes

Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...

متن کامل

Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin).

Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. Although the cellular toxicity of IAPP has been established, the structure of the fibrillar form found in these deposits is unknown. Here we have crystallized two segments from IAPP, which themselves form amyloid-like fibrils. The atomic st...

متن کامل

Newly identified pancreatic protein islet amyloid polypeptide. What is its relationship to diabetes?

Islet amyloid polypeptide (IAPP) or amylin is a newly identified 37-amino acid COOH-terminal-amidated polypeptide that is the major protein constituent of amyloid deposits in insulinomas and amyloid deposits in pancreatic islets of non-insulin-dependent (type II) diabetic humans and adult diabetic cats. IAPP is stored with insulin in beta-cell secretory vesicles and is cosecreted with insulin i...

متن کامل

Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process.

Islet Amyloid Polypeptide (IAPP or amylin) is a peptide hormone produced and stored in the beta-islet cells of the pancreas along with insulin. IAPP readily forms amyloid fibrils in vitro, and the deposition of fibrillar IAPP has been correlated with the pathology of type II diabetes. The mechanism of the conversion that IAPP undergoes from soluble to fibrillar forms has been unclear. By chaper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2018